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SUMMARY 

In this paper a comparison is carried out between three correction methods for multigrid local mesh refinement in 
oceanic applications: FIC, LDC and the direct method (DM) proposed by Spall and Holland. This study is based 
on a nested primitive equation model developed by Laugier on the basis of the code OPA (LODYC). The 
external barotropic problem is solved using any of the three local grid correction algorithms yielding an 
interactive nested grid model. The non-linear elliptic equation for the barotropic streamfunction tendency is 
solved on two nested grids, called the global and the zoom grid, that interact between themselves. The zoom grid 
is entirely embedded within the global domain with a horizontal grid step ratio of 3: 1. The computation on the 
global grid supplies the boundary conditions for the zoom grid region and the fine grid fields are used to correct 
the global coarse solution. The three local correction methods are tested on two problems relevant to oceanic 
circulation phenomena proposed by Spall and Holland a barotropic modon and an anticyclonic vortex. The 
results show that the nesting technique is a very efficient way to solve these problems in terms of a gain in 
precision compared with the required CPU time. The two-domain model with local mesh refinement allows one 
both to manage effectively the open boundary conditions for the local grid and to correct the global solution 
thanks to the zoom solution. In the case of the modon propagation the three local correction methods provide 
approximately the same results. For the baroclinic vortex it appears that the two iterative methods are more 
efficient than the direct one. 

KEY WORDS: ocean circulation model; primitive equations; interactive nested grid model; multidomain methods; multigrid 
local mesh refinement; local grid correction 

1. INTRODUCTION 

For oceanic circulation problems, in order to increase the horizontal resolution in a subregion without 
incurring the computational expense of high resolution over the entire domain, a nested primitive 
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equation model has been developed. 1,2 Moreover, computer resources may be wasted in regions 
where the flow is sufficiently smooth. Oceanic phenomena cover a disparate range of spatial scales 
from turbulence, eddies and fronts to planetary waves. Therefore a single mesh size could be 
insufficient to modelize these processes correctly without exceeding computer limitations. The nested 
grid technique is a very efficient way to overcome these difficulties. This technique has been widely 
used in meteorologyss and more recently in oceanography, for which some examples of applications 
can be found in References 6 and 7. The drawback of this technique is the great number of parameters 
or the generation of new problemsgrid interaction, computational eficiency and conservation 
properties-compared with a classical technique with a single expandable grid. In the present study 
we have chosen to compare three local grid correction methods allowing a multigrid mesh refinement 
within an interactive nested grid model. The embedded model, which uses a fine grid (FG) and a 
coarse grid (CG) that interact between themselves, is built from an ocean circulation model8 based on 
the formulation proposed by Bryan.' This formulation of the primitive equations using the barotropic 
streamfunction involves the resolution of an elliptic problem coupled with a parabolic problem 
corresponding to the baroclinic part. We propose here to compare the three local grid correction 
methods for the implicit resolution of the elliptic problem, the explicit part being solved as described 
in a previous Usually in the nested model the barotropic streamfunction equation is solved 
on two grids by a simple direct method (DM).627 We propose here to compare this direct method with 
the two iterative methods FIC1o,ll and LDC.I2,l3 These local grid iterative correction methods were 
originally developed for elliptic problems and have not yet been tested on the three-dimensional 
primitive equation model, though the FIC method has been validated in a two-dimensional case. l 4> l5  

In Section 2 of this study we present the basic equation model and the Poisson-like equation for the 
barotropic streamfunction tendency which is to be solved on two nested domains. The general 
methodology and the three local grid correction algorithms used for the resolution of the non-linear 
elliptic problem for the streamfunction are described in a unified presentation in Section 3. The two 
test problems and the numerical results are finally discussed in Section 4. 

2. BASIC MODEL 

2.1. Physical model 

The embedded model described in this paper uses, on both the local and global grids, the primitive 
Reynolds-averaged NavierStokes equations for a stratified, incompressible fluid, assuming that the 
hydrostatic and Boussinesq approximations are valid. 

In any orthogonal co-ordinate system (x ,  y ,  z) the conservation of the momentum of a fluid element 
yields 

1 

Po 
a t u h  + (k v x U h  + f)k x U h  + Wa,Uh + -vb + $ p o ( u h ) 2 ]  = p"(U,), (1) 

where U h  = (u, v, 0) and w are the horizontal and vertical velocity components respectively, f is the 
Coriolis parameter cf = 2 0  * k, where 0 is the Earth's angular velocity vector and k is the vertical 
unit vector oriented along the vertically ascendent direction z), po  is a reference density and p is the 
pressure. 

For a fluid without internal sources or sinks the conservation of heat may be written as 

atT + V ' ( m h )  a,(TW) = FST(T),  (2) 

where T is the potential temperature. 
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The hydrostatic assumption gives, according to the Boussinesq assumption, 

a g + p g = o ,  (3) 
where g is the gravitational acceleration. 

The continuity equation is 

v ' Uh + a,w = 0. (4) 

An equation of state is used to calculate the in situ density p from the temperature. In the present 
study this equation has been simplified by not including the effects of salinity, so that 

P = P(T) .  ( 5 )  
For the purpose of simplification the salinity transport diffusion equation, analogous to the 

temperature equation (2),  will not be considered here. 
The turbulence closure hypothesis consists of the specification of the turbulence tensors (which 

represent on the large scale the effect of small-scale dynamics and thermodynamics) in terms of only 
large-scale dynamic and thermodynamic features. 

We chose a classical turbulence model where the viscous and thermal diffusion terms s u ( u h )  and 
FT( T) correspond to zero-order Reynolds tensor modelling: 

F u ( u h )  = vth[V(V * uh) - v x (v x uh)] f a,(vbazuh) = 'VthAUh + a,(vba,u,), (6) 

p ' ( T )  = K&T + a,(K,a,T), (7) 

where qh, v, and Kth, K~ are the viscous and diffusive turbulence coefficients respectively. In order to 
simplify the present study, these coefficients are chosen constant (see Tables I and 11), but other 
turbulence closure models could be used' if necessary. 

2.2. Numerical methodology 

2.2.1. Procedure for$ltering external gravity waves. The procedure used to solve the momentum 
equation on the local and global grids is the method first introduced by Bryan.' The rigid lid 
approximation is made, i.e. w(z = 0) = 0, which allows us to filter the external gravity waves without 
suppressing the pressure variation at the ocean surface. Vertical integration of the continuity equation 
(4) and the hydrostatic equation (3) gives the vertical velocity and pressure, the latter being 
decomposed into surface and hydrostatic pressure: 

0 

P ( X ,  Y ,  z , t )  = P,(x, Y ,  t )  + P H ( X , Y ,  Z, 0,  with PH = J, pgdC. (9) 

If we assume that the vertical velocity at the surface is equal to zero, then, with the help of the 
continuity equation (4) integrated between the bottom and the ocean surface, together with the 
kinematic condition at the bottom, i.e. w(z = -%) = - u h  9 V%, it is easy to show that the external 
barotropic mode corresponding to the vertically integrated horizontal velocities can be derived from a 
stream function Y: 
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The surface pressure is eliminated from the equations by decomposing the horizontal velocity field 
into the external mode and the internal mode describing the baroclinic deviations from the vertically 
averaged flow: 

Since the surface pressure gradient Vp, does not depend on z, equation (1) can be written as 

where 

Then we take the horizontal curl, i.e. the operator k - V x ,  of equation (12) to obtain a prognostic 
equation for the tendency of the barotropic streamhnction Yt  : 

Hence 

where -G, = k - V x M h  is the barotropic vorticity tendency. For simplicity we also call G, the 
barotropic vorticity tendency. 

Finally the horizontal current is computed by 

At each time step, equation (13) is solved explicitly to get the baroclinic part of the current. The 
elliptic equation (1 7) is solved to find Yt, the barotropic part of the current. 

There is no flux of momentum and heat across continental boundaries and at the bottom of the 
ocean; in addition, a no-slip boundary condition is currently used on the velocity field. The Poisson- 
like equation (17) is solved with Dirichlet conditions along continental boundaries, which means that 
no flux of mass is allowed through coastal boundaries. At the surface the momentum flux, the heat 
flux and the salinity flux (evaporation) are prescribed. 
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2.2.2. Numerical schemes. All the equations of the model are discretized, using a C-grid following 
the nomenclature of Arakawa and Lamb,16 by a second-order (in time and space) finite difference 
method. With this representation, all the fields are discretized on a staggered grid where u, v, T, S and 
p are defined at the same level (Figure 1) and w is defined at intermediate vertical levels. The model 
uses an explicit temporal scheme based on the leap-fiog second-order scheme combined with a 
stabilizing correction for the odd and even time modes." The second-order spatially discretized 
Poisson problem for the barotropic streamfunction tendency is solved at each time step by a 
diagonally preconditioned conjugate gradient method which is well-adapted to vector computers." 
For a given value of E, (see Tables I and 11) the number of gradient iterations is defined by a 
convergence criterion satisfied by the Euclidean norm of residuals at each iteration 1 : llr'll/llrO1l < E,. 

Assuming that the variables (u, v, w,pH, T, S, p are known at time steps tn-l and t,, the variables 
are calculated at time step t,+l by following the algorithm below. 

1. Compute Mg, @ and (a,&)' by (13) explicitly. 
2. Compute (G,)" and solve (17) to obtain (Y,)' and therefore (arUh)". 

Figure I@). Non-matching nested grids R,, oh and h,,. View of a comer of the local fine grid wh embedded inside the global 
coarse grid a,. The correction subdomain &,, c wh is also represented in the case of d = dist(&,, aW,) = H 
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Figure ](a). Staggered meshes in the horizontal plane (M, N). View of a part of R, and oh, a coarse control volume with mesh 
step Hand a fine control volume with mesh step h respectively, represented for a ratio q = H/h = 3; u and v are the horizontal 
velocity components, Y is the barotropic streamfunction located at the centre of the control volume, while the temperature 

nodes Tare located at the vertices 

3. Compute (a,U,)" and integrate (1 8) explicitly to obtain U;" = (u"+l, fl+', 0). 
4. Solve (2) explicitly to obtain T"+l. 
5. Compute Wn+l with (8), p"+' with the equation of state ( 5 )  and p;ft' with (9). 

3. LOCAL GRID CORRECTION METHODS WITH MESH REFINEMENT 

3.1. General methodology 

The purpose of this paper is to compare three local resolution methods for the external mode, 
which represents the implicit part of the problem. The explicit part, i.e. the internal baroclinic mode, 
is calculated independently on the two grids and interpolations on the prognostic variables are made 
to calculate the global baroclinic tendency. The basic embedded model',* uses two three-dimensional 
nested grids. Because of the two-dimensional nature of the streamfunction equation, we consider the 
global horizontal domain SZ with r = and a local refined domain w, the zoom subdomain 
enclosed in Q. The associated open discrete domains R, and w h  have respectively a coarse grid step 
H and a fine grid step h (h < H ) .  We have chosen to use only odd grid ratios q = H / h  in order to 
simplify the interaction procedures between the grids (Figure l(a)). With an odd grid ratio we have 
w, c oh (wH = w f l  Q H ) ,  so that each temperature and velocity coarse grid point in the zoom 
domain coincides with a fine grid point of similar type. In particular, each coarse streamfunction 
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point 'P in wH coincides with a fine streamhction point in o h .  Such a discretization induces a non- 
uniform composite grid on R (Figure l(b)). 

We introduce between the global coarse grid and the local fine grid a prolongation operator PL and 
we define the discrete problems associated with equation (17), respectively global (Pa) and local 
P,): 

The 'forcing' procedure consists of prescribing the boundary conditions for the local grid wh from 
a previous global resolution on R,. It is performed by interpolation of the coarse grid solution. In 
practice the prolongation P i  will be defined as a linear interpolation of type Q1, reduced to a 
monodimensional operator on the interface rh because the coarse and fine nodes are aligned (Figure 

We also define a correction subdomain W c o and the distance between their boundaries, 

At each time step t,, equation (17) is solved on the global and local grids. The general embedding 

1. Start: 

I@)). 

d = dist(aW, a0) 3 0, given by the number of coarse mesh steps, H (Figure l(b)). 

procedure can be resumed by the following instructions. 

0 (G,): = (GJ; and (G,): = (GJI computed independently on a, and o h  
0 solve (Pa) with (GJH = (G,)' to give (a,"); f 
0 solve (P,) with (Gzlh = (GJh to give (a,~):. 

0 correction on the global grid by solving (Pa) with (Gz), = (G,); to give (a,'P)i 
2. Two-grid iterations, k = 1 to K: 

0 solve (P,) on the zoom grid with (Gz)h = (GJ; = (G,): and new boundary conditions to give 
(8, 'PI:. 

3. Reactualization: 
0 (at"); = (a,'P)fi and (a,'P)i = (a,"): 

The general form of (G,); for the three local grid correction methods can be written for each 
coarse grid point x E RH as 

where xiu, is the characteristic function of W, and d i  is the local defect at iteration k. 
Let us note that according to the previous algorithm, problems (Pa) and (P,) are both solved K + 1 

times. The linearization phase is done implicitly at each time step because the terms G, are not 
recomputed from the baroclinic deviations during the correction phase. 
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3.2. Three local grid correction algorithms 

3.2.1. FZC Algorithm. The first multilevel local mesh refinement method is an adapted version of 
the so-called FIC (flux interface correction)""' which was applied to the resolution of a barotropic 
m ~ d o n . ' ~ , ' ~  

For each coarse node x of QH in & (i.e. Vx E G H ) ,  V, = VH(x) corresponds to the coarse control 
volume (with step H) and n is the external unit normal defined on its boundary aV, (Figure l(b)). 

The principle of this algorithm is to satisfy, over a given control volume, a weak continuity relation 
of the solution fluxes between two non-matching grids of a composite mesh. In the adapted version14 
of the FIC algorithm we defined the correction by the local defect 

& = &+) + (G&' - (GJL, 

( G A  = (Gz)Y + XG/&+), k 2 1, (21) 

k > 1, (20) 

or more simply by 

where c$ = -( 1 /H)V(Y,) denotes the flux density vector of the barotropic streamfunction tendency 
and the residual is calculated by 

We introduced the following quantities: 

(23) 
1 v* (G,) idP-j  v, (GAdP 

E X  mes( V,) 
H( = rnes(av,). eh,H(x) = + 

4i-l ndo - javx +;-I * ndo ' J,, 
This determination of .",(+), which corresponds to a conservative correction in terms of the solution 
flux, assumes that we take the following precaution: 

(24) 
To compute the defect 4, we use a linear restriction operator between the local grid and the global 

grid, of type FWICV (full weighting interface control volume), defined by 

This operator is computed by a second-order quadrature formula corresponding to a spatial averaging 
of the fine flux at the interface av,: 

For example, in the case of uniform square meshes it yieids 
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In practice the quantity can be evaluated by successive approximations of (23) or, as in this 
study, by taking a constant relaxation coefficient" (8h,H(x) M 8, as vx E c;)~); here we chose 
empirically 8 = I , l 4  but the influence of 8 was also in~estigated.'~ 

The correction equation (21) can be applied in particular in the case of a non-exact resolution of 
problems (P,) and (P,) by carrying out only a few iterations of the conjugate gradient solver but 
increasing the number K of correction iterations. 

However, by using the Stokes theorem and considering that the Poisson problems are quasi-exactly 
solved (i.e. V * +:-' (G,);-', V k  2 l), we can show easily using (25) that the correction can be 
written asI5 

(Gz)k = (1 - &,6h,~)(G~)k-' + &+, B""e(+,"-l), k 2 1. (28) 
EH 

More complete explanations of, some comments on and possible future extensions of the nested 
multilevel zoom FIC method are described in Reference 15. 

3.2.2. LDC Algorithm. The second local grid correction method that will be tested is the LDC 
(local defect corre~tion).'~"~ The correction is then defined by 

42 = hf(&m,w:-LN - (G);. (29) 

where LH is the discrete operator corresponding to the second-order elliptic operator 
L = V * [ - ( l /X)V (LH is calculated by a five-point finite different scheme as in the discrete 
problem corresponding to (Po) and (P,)). The operator @ is the FWCVI3 restriction defined by 

where Qh represents any local variable. This operator is computed by a second-order quadrature 
corresponding to a spatial average of the fine grid quantities: 

In the case of uniform square meshes it gives 

3.2.3. DM Algorithm. The third local grid correction method that will be tested is the technique 
used by some authors for oceanography6,' nested models, whereas improved versions of the 'box' 
method have been generally used in We shall use the initials DM to refer to this 
direct method. The correction is then defined by6 

4 = &%G,>ll> - ( G A .  (33) 

Let us remark that in any case the correction does not depend on the index k. Therefore the main 
difference with respect to two previous methods is that the DM aIgorithrn is a direct method. Thus we 
are better to write the correction by the equality 

(Gz); = CG,);; + X&m(G,),") - (G2G1. (34) 

In fact, at any time step fn, equation (17) is solved on the two grids in the following way. 
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(a) Solve (P,) with (Gz)H = (G,): to give (atY)k. 
(b) Solve (P,) with (GJh = (G,)," to give (atY),". 

Therefore the correction just consists of a simple reactualization of the coarse barotropic vorticity 
tendency by means of a local average of the barotropic vorticity tendency on the fine grid. 

3.3. Differences and common features 

The multigrid extension can be easily achieved by a recursive implementation of the two-grid 
algorithm in the form of V- or W-cycle~.'~ 

In contrast with both the LDC and FIC iterative methods, the DM method is direct. With the LDC 
and FIC we can solve the elliptic problems (Pa) and (P,) by means of an 'inexact solve' procedure. 
On the other hand, the correction can be applied directly once and once only, without any 
initialization phase, with the DM. This is possible because the barotropic vorticity tendency (G,) can 
be computed independently on the two grids before solving problems (Pa) and (P,). 

To evaluate R:(+h) for the FIC algorithm in the case of non-constant X ,  it would be better to use 
equality (26) together with a conservative discretization method." However, if the depth is constant, 
as in the two tests of Section 4, and if the local problems are quasi-exactly solved (i.e. 
V - +! x (G,)!, Vk 2 0), we can compute this term by a volume average on V, (restriction of type 
FWCV) instead of a surface average on aV,, sol5 

In that case and for the parameters eh,H = 1 and K = 1, if we use the more general equation (28), we 
find the correction term applied on the global grid with the DM (34) as 

Finally, let us remark that with the FIC method, if the correction terms are evaluated on the coarse 
nodes of the local boundary, i.e. amH, the algorithm allows us to ensure the conservation of fluxes 
between the two domains." This property will be important to ensure, upon long-time integration in 
basin-scale climate studies, the conservation of energy and heat or momentum fluxes at the interface 
between the nested subdomains. For the present study where the FIC method is only applied to the 
barotropic part of the horizontal velocity, the conservation of the barotropic energy and momentum 
flux is ensured at the scale of each coarse control volume located in the correction subdomain W. 

4. NUMERICAL RESULTS 

The three local grid correction algorithms with mesh refinement are applied to two non-stationary 
problems proposed by Spa11 and Holland? a barotropic modon and an anticyclonic baroclinic vortex. 
They were motivated by the knowledge of their expected behaviour and their highly non-linear and 
pathological eddy. The results will be very sensitive to errors and therefore they provide strong tests 
of the local grid correction methods. In the fist case the modon is initialized at the centre of the local 
domain by giving the analytical solution of the barotropic streamfunction. l 9  It propagates towards the 
east into the global domain through the zoom grid boundary under the beta planetary effect. This test 
supplies a good benchmark for the problem of open boundary conditions. Initially, all the flow field is 
contained within the fine grid. The coarse grid must give good boundary conditions to the zoom grid 
to maintain the structure of the modon when it goes through the grid interface. Moreover, the 
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boundary condition obtained from the global grid will depend on the sharp resolution of the local 
problem and the effective correction for the coarse grid. The second test problem deals with the 
propagation of an anticyclonic baroclinic vortex. It also starts with information within the local 
domain and then it generates large-scale features which may come back by reflection according to the 
boundary conditions on the global domain. It provides new forcing conditions for the evolution of the 
local solution. Besides, this problem allows us to investigate the baroclinic aspects for the local grid 
correction with a stratified ocean where important internal gravity waves are also present. 

4. I. Notation 

For any characteristic variable cp of the problem, i.e. the barotropic streamfunction Y ,  the kinetic 
energy E, and the density p or temperature T, cp* represents the reference solution, which is either the 
analytic solution (in the case of the barotropic modon) or the numerical solution calculated with a 
high resolution (for the baroclinic vortex). We evaluate as a function of time t,, = nAt the discrete 
error on the global grid at the zoom iteration k, defined by ep = cpy - cplj". By choosing the L2 
discrete norm, we consider as a function of time and for the mesh ratio q = 3 the quantities 
c$' = I l e l j " ~ ~ / ~ ~ c p ~ * ~ ~ ,  which represent the relative error discrete norms. We also compute the errors 
on the local grid, t:," = I@' II / II cpi'" 11, in a similar way. 

When the index k is omitted, it means that the errors are computed without zoom, i.e. the 
monodomain global resolution with a large grid step H or even with the fine grid step h (without 
correction). When k = 0, it means that the errors are calculated on the local solution obtained without 
correction for the global coarse grid, i.e. with the passive version of the nested model. Note that we 
always have k = 1 for the DM. 

Finally, for the two iterative methods (FIC and LDC) we define an asymptotic rate of convergence 
at each time step by 

where AY(Y,) = (Yt)& - ("!);-I, (Y,); being the value obtained at time nAt for the kth iteration of 
the local grid correction algorithm LDC or FIC. A more standard definition of the covergence rate for 
an iterative procedure has also been used in References 14 and 15, but only for the FIC method for 
which the flux residual tends to zero, which is not the case for the LDC: 

The convergence rate is estimated by an 'inexact solve', i.e. for a small fixed number of conjugate 
gradient iterations for the resolution of (Pa) on the CG (Npcg,) and for the resolution of (P,) on the 
FG (NpcgJ, if K is sufficiently large; typically K = 10 V-cycles. 

4.2. A barotropic modon 

The barotropic modon is initialized at time t = 0 on both grids by the analytical solution of the 
quasi-geostrophic potential vorticity equation with the beta plane approximation in an infinite 
ocean.'' At weak Rossby numbers this solution can be taken as a reference to compute the errors of 
simulations on a large global domain and with sufficiently small difhsion parameters. The global 
resolution domain is considered as a homogeneous ocean. The modon is initially centred in the local 
domain o, which is itself centred within the global domain (Figure 2). With the beta planetary effect 
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at the middle latitude 8, = 38 * 5" N, the modon of radius a = 75 km propagates eastwards without 
any deformation at the uniform speed C = /la2 x 0 * 1 m s-', where /3 is given by 

252 
a, 

/3 = - COS(O,), 

with 52 the rotation of the Earth and a, the radius of the Earth. 
The global discrete domain Q, covers 750 km by 750 km with a constant grid step H = 15 km for 

the CG and the local domain is 300 km by 300 km with a step h = 5 km for the FG, the ratio being 
q = 3. With respect to the CFL stability criterion the simulations are performed with At = 7200 s and 
carried out over 350 time steps, i.e. 29 days 4 h. 

In Figure 3 we have represented, at different times, lines of is0-Y on wh. We have chosen to show 
only, in the zoom case, the result produced by the FIC algorithm for 8 = 1 and K = 1. The other 
algorithms produce globally the same behaviour as the local zoom solution. The modon crosses quite 
well the boundary a0 between the two domains with a very weak diffusion and deformation. It also 
leaves the fine grid region with a weak trace of its crossing and with a small delay compared with the 
analytical propagation speed, which is approximately 3% faster than the nested grid model solution 
evaluated on the fine grid. For the global solution the analytical speed of propagation is 
approximately 10% faster than the one obtained on the coarse grid with zoom correction. For the 
monodomain solution on the coarse grid without zoom this difference is of the order of 23%. These 
results are in agreement with the study of McWilliams et al.?' which shows that there is little 
practical utility in increasing the number of grid nodes per modon diameter beyond 30. For that 
reason and because we have already carried out this simulation with a finer nested s ~ b g r i d , ' ~ * ' ~  we 
have chosen only one value for q in the present work. 

The noticeable improvement in the precision with zoom can be verified with the relative errors 
computed on CIH (Figure 4). A comparison of the results obtained with the three methods is shown in 

10.  CONTOUR INTERVAL OF 10. Sv (SWI~NP) 7 7 0 .  

Figure 2. Initial position of the modon; lines of iso-Y' on oh. The global R and local o domains are represented 
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t*, 6h t=lbl, 16h t=29d, 4h 

Figure 3. Barotropic modon; lines of iso-Y on wh at time 6 days 6 h, 16 days 16 h and 29 days 4 h. (a) Analytical solution. (b) 
FIC with d = H and K = 1 

Figures 5 and 6, where the errors are evaluated with the optimal parameter d = H for the DM, LDC 
and FIC and with one iteration of the zoom algorithm at each time step. The behaviour of the solution 
on SZ,  and on w,, obtained with the FIC and DM is very similar, according to the remark in Section 
3.3; the error found with the LDC is a little greater. Note that the error with zoom effect on oh, 
whatever the method used (Figure 6), is of the order of the one obtained with a more expensive 

Time (days) 

Figure 4. Barotropic modon; relative error for Y on nH. A. Monodomain on nH: &. B. FIC, K = 1 ,  d = H :  tg. 
C. Monodomain on n, : 5; 
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Figure 5. Barotropic modon; relative error for Y on R,. A. FIC, K = 1, d = H :  <g. B. LDC, K = 1, d = H :  <;. C. DM, 
d = H : <?. D. Monodomain on R,, : C; 

computation on the single global grid Qh (Figure 5). The cost in CPU time of the use of a high 
resolution (Q,) over the entire domain is 1.6 times greater than for the embedded model with the 
LDC or FIC method and 2.6 times larger than with the DM (see Table I). Increasing the iteration 
number K of the zoom algorithm does not improve significantly the resulting solution given by the 
LDC or FIC, as we can see in Figures 7 and 8, as long as a quasi-exact solve is performed for the 
resolution of both the global and local problems. 

In order to evaluate the influence of the parameter d, we have computed the errors on QH with 
d = H ,  2H and 5H for the DM, FIC and LDC (Figures 9-1 1 respectively). The results are relatively 
sensitive to the choice of d. The optimal value is d = H for all three methods. We can verify again 
that the solutions found with the DM and FIC for the different values of d are very similar. The value 
d = 5H gives poor results because of the small number of coarse grid nodes affected by the zoom 
correction. The most significant difference occurs ford = 2H:  for the LDC this value gives a slightly 
greater error than the optimal value d = H ;  for the FIC and DM this choice induces a particular 
behaviour of the solution. On one hand, until the 15th day the error in the global solution with 
d = 2H is almost equal to the one obtained with the optimal value d = H .  On the other hand, 
between the 15th and 17th day, when the modon centre crosses the interface, the error with d = 2H 
increases more and finally exceeds that found with d = 5H. 

The computation of the convergence rate by the inexact solve, with NpcgH = 8 and Npcgh = 12 at 
each time step t, = nAt, gives the time variation in pio for the LDC (Figure 12) and FIC (Figure 
13(a)). The convergence rate of the FIC vanes in the range 0.35-1 when the modon is fully outside 
the zoom subdomain. For the LDC until the 210th time iteration this rate is between 0.3 and 0.4. 
After this time step and until the end the rate is subject to variations between 0.4 and 0.9. However, 
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Figure 6. Barotropic modon; relative error for 'P on oh. A. Passive nested grid model: t;;". B. FIC, K = 1 ,  d = H :  t;:". 
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Table I. Parameters for nested grid model and CPU times for simulation of 
barotropic modon 

Parameter FG CG RG 

M ,  N(L = 1) 61 51 152 
At (4 7200 7200 7200 
k AY (km) h = 5  H =  15 h = 5  

w, = icth (m2 s-'> 25 40 25 
Er low2 

Numerical model CPU time (s) (d = If) Iterations in time 

Monodomain on f l H  
Monodomain on Q, 
DM 
FIC, K = 1 
LDC, K = 1 
FIC, K = 2 
LDC, K = 2 
FIC, K =  10 (inexact solve) 
LDC, K =  10 (inexact solve) 

6 
36 
13.7 
22.2 
21.3 
24 
24 
554  
56.2 

350 
350 
350 
350 
350 
350 
350 
350 
350 
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Figure 7. Barotropic modon; relative error for Y on CI A. FIC, K = 2, d = H :  e?. B. FIC, K = 1, d = H :  (2;". C. LDC, 
K = 2, d = H :  t$. D. LDC, K = 1, d = f i  <$' 

we must notice that a far better result was obtained on the same modon problem for the FIC 
algorithm by using the more classical definition of the convergence rate I ,  in Section 4.1 involving the 
ratio of the successive residuals norms (Figure 13(b)). Thus for the FIC method the mean 
convergence rate is as good as 0-03 with variations between 0.01 and 0.06 up to the 300th time step 
and especially very small variations around 0.03 when the modon is still included inside the local 
zoom grid. After the 300th time step the convergence rate is increasing but not beyond the value 0.2 
(see Figure 13(b)). 

4.3. A baroclinic vortex 

The nested grid model is initialized on both grids by a Gaussian pressure distribution with a 
horizontal e-folding scale of 50 km in the upper layer and no motion in the lower layer. The 
thermocline is located at a depth of 80 m and the elevation height of the pycnocline is 40 m. The 
velocity field is initialized to be in geostrophic balance with the Gaussian pressure distribution. This 
equality is verified in a discrete way in 0, and o h ,  so that at any level the velocity is a non-divergent 
field. Therefore the transport is non-divergent at time I = 0 on both grids. It is important to satisfy 
this property in order to conserve in the discrete model, at each time step, a non-divergent transport. 
In this study the solution includes a high non-geostrophic component, the Rossby number Ro being 
initially equal to 0.3. Under the beta planetary influence the anticyclonic vortex located in the 
northern hemisphere (0, = 38 5" N) moves to the southwest. 



20 

NESTED GRID METHODS FOR AN OCEAN MODEL 1179 

18 

16 

14 

4 

2 

0 

Time (days) 

Figure 8. Barotropic modon; relative error for Y on w A. FIC, K = 2, d = H :  t;". B. FIC, K = 1 ,  d = H :  tk". C. LDC, 
K = 2, d = H : tf.. D. LDC, K = 1, d = H : ti" 

Time (days) 

Figure 9. Barotropic modon; relative error for Y on QH. A. DM, d = H :  tp. B. DM, d = 2 H :  tz. C. DM, d = 5 H :  @ 
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Figure 10. Barotropic modon; relative error for Y on R,. A. FIC, K = 1, d = H :  1;;. B. FIC, K = 1, d = 2 H :  &". C. FIC, 
K = 1 ,  d = 5H: lF 

Figure 1 1. Barotropic modon; relative error for Y on Q,. A. LDC, K = 1 ,  d = H :  t i". B. LDC, K = 1 ,  d = 
K = 1 ,  d = 5 H :  {F 2 H :  t;. C. LDC, 
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Figure 12. Barotropic modon; convergence rate for LDC: pIo 
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There is no analytic solution available for the evolution of such a baroclinic vortex. Hence the 
reference solution will be the numerical solution computed with the basic model with the single fine 
grid on 0, corresponding to the discrete domain ah, which we shall call the reference grid (RG). 

Initially the vortex is centred inside a closed ocean without topography and with rectilinear lateral 
boundaries. The dimension of the global domain 0 is 675 km by 675 km horizontally and the depth 
is 550 m. The dimension of the local domain o is 200 lan by 200 km. The coarse grid (CG) is 
defined by a 45 x 45 mesh on the horizontal level (A4 x N) with a constant grid step H = 15 km and 
by 10 resolution levels (L) in the vertical direction. Only the ratio q = 3 was used, inducing for the 
fine grid (FG) a horizontal grid step h = 5 km for a 40 x 40 mesh on the horizontal level. The 
simulations are performed with At = 1200 s, satisfying the CFL stability criterion, and carried out 
over 9000 time steps, i.e. 125 days. 

We have represented in Figure 14 the density (6p = p - 1000) on oh at the pycnocline level, i.e. at 
a depth of 112 m, for the reference solution (Figure 14(a)) and the fine grid solution (Figure 14(b)) 
obtained by the nested model with the DM for the resolution of the barotropic part. Globally the 
vortex propagates towards the south-west with a relatively large vertical diffusion. The propagation 
speed of the baroclinic vortex decreases rapidly, correlatively with the maximum of vorticity which 
decreases from the value 2 8 x s-' at t = 0 to the value 0 * 35 x lop5 spl at t = 125 days. 
The vortex develops some instability which creates a cyclonic circulation visible at the south-west 
and north-west of the vortex centre (Figure 15(a)). The barotropic part of the current is represented in 
Figure 16 for the coarse grid solution with zoom and without zoom correction. These solutions may 
be compared with the expensive solution obtained on the RG, which requires four times more CPU 
time than the nested grid solution (see Table 11). The coarse grid solution with zoom looks very 
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t=83 d, 8 h 

t=41 d. 16 h 
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t=83d. 8 h el25 d 

Figure 14. Reference and fine grid calculations; density of the baroclinic vortex at depth z = -1  12 m. (a) Reference 
calculation; Sp = p - 1000 (9) contours on wh at time 0 (contour interval CINT = 1 x lo-’), 41 days 16 h 

(CINT=4 x lo-’), 83 days 8 h (CINT= 1 x lo-’) and 125 days (CINT= 1 x lo-’). @) Fine grid calculation with zoom 
correction; dp = p - 1000 (9) contours on oh (same CINT values as in (a)) at time 83 days 8 h and 125 days 
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Figure 15. Reference, fine and coarse grid calculations for the baroclinic vortex at depth z = -7 m (Ro = 0.3 for (aHc)). (a) 
Reference calculation; vorticity contours [ = i3,v - a,,u (s-I) on oh at time 41 days 16 h (/CINT= 1 x labels scaled by 
lo'), 83days 8 h (CINT = 8 x lo-', labels scaled by 10') and 125 days (CINT= 5 x 10- , labels scaled by 10'). (b) Fine grid 
calculation with zoom correction; horizontal velocity Uh (cm s-') on wh at time 41 days 16 h, 83 days 8 h and 125 days. (c) 
Coarse grid calculation without zoom; horizontal velocity U, (cm s-') on nH at time 41 days 16 h, 83 days 8 h and 125 days. 
The boundary of the local domain is indicated. (d) Fine grid calculation with zoom correction for the baroclinic 

vortex with Ro = 0.5; horizontal velocity U, (cm s-')  on oh at time 41 days 16 h, 83 days 8 h and 125 days 
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Figure 16. Reference and coarse grid calculations for the baroclinic vortex; the local domain is indicated. (a) Reference 
calculation; streamhction contours (Sv) on R, at time 0 (CINT= 1 x lo-’), 20 days 20 h (CINT=9 x 41 days 16 h 
(CINT=6 x 10-’1, 83 days 8 h (CINT=4 x lo-’), 104 days 4 h (CINT=3 x and 125 days (CINT=Z x lo-’, 
labels scaled by 10 ). @) Coarse grid calculation with zoom; streamfunction contours (Sv) on SZ, (same CINT values as in (a)) 
at time 83 days 8 h, 104 days 4 hand 125 days (labels scaled by lo3). (c) Coarse grid calculation without zoom; streamfunction 

contours (Sv) on Q, (same CINT values as in (a)) at time 83 days 8 h, 104 days 4 h and 125 days (labels scaled by lo4) 
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Table 11. Parameters for nested grid model and CPU times for simulation of 
baroclinic vortex 

Parameter FG CG RG 

M, N 40 45 134 
L 10 10 10 
At (4 1200 1200 1200 

10K2 lo-* 
k c ,  AY (W 

v, = K~ (m2 s-I) 5 1 0 - ~  5 x 5 x 1 0 - ~  

h = 5  H = 1 5  h = 5  
% 
v, = K*(m2 s-1) 50 125 50 

Numerical model CPU time (s) (d = 0) Iterations in time 

Monodomain on QH 
Monodomain on a,, 
DM 
FIC, K=2  
LDC, K = 2 

572 
4335 
1148 
1355 
1355 

9000 
9000 
9000 
9000 
9000 

similar to the reference one, in contrast with the coarse monodomain solution without zoom. The 
solution rapidly develops barotropic Rossby waves which extend towards the open boundary of the 
local domain and involve the entire domain. Finally, at t = 125 days the solution is quite complicated 
and the initial structure of the barotropic ring is no longer recognizable. 

The propagation across the interface between the two grids is reproduced quite well by the nested 
grid model without any distortion of the solution (Figure 16(b)). Without the zoom effect the solution 
diverges rapidly from the reference solution, as we can see in Figures 15(c) and 16(c), where the 
horizontal surface velocity and the barotropic streamfunction are represented respectively. In the case 
of the coarse monodomain resolution on RH there are only six grid nodes across the vortex diameter. 
This resolution is widely non-sufficient to solve correctly the propagation of the vortex, as we can see 
in Figures 17(a) and 17(b), where the kinematic energy (E,(x,y, z) = u2(x, y ,  z) + z?(x,y, 2)) relative 
error is represented in the cases with zoom and without zoom correction on the coarse and the fine 
grid respectively. The zoom effect is quite spectacular: with feedback the relative error varies with 
time from only 5% to 23% on R, and from 0% to 20% on oh; without zoom the error increases 
rapidly to reach the maximal value of 90% on the coarse grid and 62% on the fine grid. A similar 
spectacular reduction of the error is observed with zoom on the temperature or density on RH (Figure 
18(a)) and on q, (Figure 18(b)). 

Let us notice that because of the correction made on the velocity field to ensure the non-divergent 
transport hypothesis in a discrete way on R,, the initial value of the relative error on R, (Figure 
17(a)) is not zero (approximately 10%). Thus the initial discrete horizontal velocity field on RH is not 
the exact identity restriction of this on at time t = 0. We can see that the first effect of feedback 
(t = WO days, Figure 17(a), curve B) is to constrain the global solution to tend to the reference 
solution. 

With the zoom DM for different values of the parameter d and without zoom the relative errors for 
the kinetic energy on the CG are represented in Figures 19 and 20. Approximately until the 25th day 
the coarse grid solutions calculated with d = 0,  H and 2H are similar and the errors are far lower than 
the one obtained with the coarse monodomain solution. Afier this time the error in the solution 
calculated with d = H or 2H begins increasing rapidly and finally exceeds the monodomain solution 
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error before diverging. The same behaviour appears for the other methods for d # 0. Hence we have 
taken the value d = 0 for all other comparisons. In contrast with the case of the barotropic modon, the 
choice of d is here more critical. The optimal value of d is mainly dependent on the physics of the 
problem to be solved. In the case of the modon the solution depends essentially on the maximal 
barotropic tendency located at the centre. In this case the solution propagates without deformation of 
the initial structure. For the vortex the simulation is carried out in a stratified ocean and thus there are 
a large number of internal gravity waves which do not appear in the case of the modon. The quality of 
the interface boundary conditions is then essential for these waves to propagate correctly outside the 
local domain. If the distance d between the boundaries of the local domain w and the correction 
domain 5 is too large, the global solution near the local boundary is not sufficiently affected by the 
zoom correction, so the interactive nature of the nested grid model breaks down rapidly and finally 
the resulting solution diverges. 

In contrast with the barotropic modon results, an increase in the parameter K from K = 1 to 2 
improves both the coarse and the fine grid streamfunction solutions. In Figures 21 and 22 we have 
represented the relative error for Y on the CG with zoom for K = 1 and 2 for LDC and FIC methods 
respectively. For the two iterative methods the error found for more than two zoom iterations at each 
time step is not represented, because the optimal correction is obtained with K = 2. The cost in CPU 
time for two iterations of the LDC and FIC algorithms is approximately 20% more than with the DM 
(Table 11). 

For the three methods we have represented the error for the optimal streamfunction solution on the 
CG and FG in Figures 23(a) and 23(b) respectively. As a result of internal waves reflected at the solid 
boundaries of the global ocean domain propagating back into the zoom region and interacting with 
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Figure 19. Baroclinic vortex; relative error for Ec = u2 + t? on Q A Monodomain on Q, : G. B. DM, d = 0: tz. C. DM, Y:. . d = H :  tH 
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Figure 20. Baroclinic vortex; relative error for E, = 2 + 3 on Q,. A. Monodomain on QH : <;. B. DM, d = 0: ,$". C. DM, 
d = 2 H : 5 2  
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Figure 22. Baroclinic vortex; relative error for Y on R,. A. FIC, K = 1, d = 0: &". B. FIC, K = 2, d = 0: &" 

the wake pattern, the errors are highly oscillating with time. The too weak horizontal resolution of the 
coarse grid does not allow us to accurately solve for the structure and phase speed of these waves 
developing outside the fine local grid. For the fine and coarse grid solutions until the 100th day the 
error curves B and C for the FIC and LDC solutions respectively are always below the curve A of the 
DM. After this date and until the end for the coarse grid solution the curve A is below the curves B 
and C. For the fine grid solution the same behaviour occurs until the 115th day. After this date the 
curves B and C come back below the curve A. The optimal solution is found with the LDC: the curve 
C is almost always below the other curves. If we compute the temporal average of the error, we get 
respectively 25.5%, 24% and 21.7% for the DM, FIC and LDC on the CG and 9.3%, 8.9% and 7.2% 
on the FG. We think that the solution obtained with the FIC or LDC is better than the one obtained 
with the DM because the two-domain solution depends on the quality of the interface boundary 
conditions for the local solution. Effectively, the direct method only calculates the correction term for 
(P,) from the local second member (GJ,,, whereas the iterative methods use the zoom correction 
directly evaluated from the local solution (Yt),, for deriving implicitly appropriate interface boundary 
conditions for the local subproblem (P,). Moreover, the global and thus the local solutions are here 
corrected twice at each time step with two iterations of the local grid correction algorithm, which we 
cannot do with the DM. It is also important to notice that the zoom correction is, of course, really 
interesting and impressive as long as the currents of the vortex outside the fine local grid are not so 
important, i.e. until the 65th day. However, we have camed out the computations further in order to 
demonstrate the robustness of the zoom algorithms when the vortex crosses the grid interface. 

For a more precise analysis, especially after the first 60-80 days, when the solution outside the 
local domain becomes quite complex (Figure 16), the influence of a finer coarse mesh on the global 
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Figure 23(a). __roclinic vortex; relative error for Y on QH. A. DM, d = 0: t$'. B. FIC, K = 2, = 
K = 2 , d  = 0: lp 

&". C. LDC, 

domain a,, as well as the influence of the relative size and position of the local domain o, should be 
investigated. 

It is also interesting to verify whether the vortex propagation at a larger Rossby number can be 
correctly described by the nested grid model. For that reason we have performed a similar simulation 
by increasing only the elevation height of the pycnocline to the value of 60 m, which indices an 
initial Rossby number Ro = 0 - 5. In this case the propagation speed is higher and at the time t = 125 
days the vortex is half outside the local domain. Nevertheless, during the crossing of the interface, no 
significant distortion of the vortex structure was observed (Figure 15(d)) as for the modon problem 
(Figure 3). 

4.4. Discussion 

The main purpose of this study was to compare three local grid correction methods for the 
resolution of the barotropic part, namely two iterative methods, FIG"," and LDC,I2 and one direct 
method, DM.6 This study is particularly interesting because the iterative methods LDC and FIC have 
not yet been tested much for such coupled problems. For more classical elliptic problems, 
convergence proofs can be established, but numerical experiments are absolutely required for 
complicated coupled problems such as those tested here. A first observation is that the iterative 
methods are a little more difficult to implement than the direct one, in particular the FIC which has 
been adapted in References 14 and 15 for the nested primitive equation model. 

The three methods are compared on two test problems, proposed by Spa11 and Holland,6 which are 
relevant to oceanic phenomena: a barotropic modon and a baroclinic vortex. The results indicate that 
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Figure 23(b). Baroclinic vortex; relative error for Y on w,,. A. DM, d = 0: Cp. B. FIC, K = 2, d = 0: 1;p. C. LDC, 
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the interactive nested model allows us to manage efficiently in an implicit way the open outflow 
boundary conditions for the local grid resolution, which can therefore correct in a very good way the 
global solution by feedback of the local solution. We have then demonstrated the great efficiency of 
the interactive nested grid models in terms of gain in precision compared with the required CPU time. 
It appears that, essentially in the baroclinic case, the distance d which separates the local domain and 
the correction domain has a great influence upon the quality of the correction. In order to maximize 
the transmission of information from the local grid, the value chosen for d must be small enough, 
particularly for the coarse grid nodes which are used for the specification of the conditions for the 
open boundary of the local domain. The optimal value of d was found to be the same for the three 
methods in each test problem, namely d = H for the modon and d = 0 for the vortex, and it was 
determined in an empirical way thanks to the numerical experiments. 

In the case of the modon the computation of errors relative to the analytic solution shows that the 
three local grid correction methods yield approximately the same results for one iteration per time 
step of the iterative algorithm FIC or LDC. Hence we can think that DM is the optimal techniques 
because of its lower cost, but the results found in the case of the vortex indicate that it is not so easy to 
choose an optimal correction method for any problem of oceanic phenomena. Effectively, with the 
use of iterative methods only for the barotropic part, we find a nice improvement in the global two- 
domain solution in the case of the baroclinic vortex. Globally the LDC seems to be the best 
performing method despite its lack of conservation property, followed by the FIC and DM. However, 
these results are obtained with two iterations per time step of the local grid correction algorithm LDC 
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or FIC, which demands a little more CPU time than the direct method. The differences found between 
the two test problems are surely due to the physics of these phenomena. For example, in the two- 
dimensional case of the barotropic modon there are no important internal gravity waves present as 
there are in the case of the baroclinic vortex. 

5 .  CONCLUSIONS 

If we want to describe with a fine resolution of a numerical model the circulation in a local region of 
an ocean or a sea, such as a coastal zone, it is not possible for reasons of computation cost to perform 
a simulation with a high resolution over the entire domain. Therefore fine grids are generally only 
used over the local domain of interest. The problem is that it is very difficult to accurately 
parametrize the interaction between the fluid flow within the local domain and the surrounding fluid 
in the vicinity of the open outflow boundary. Various approaches exist to overcome this difficulty, as 
the use of radiation boundary conditions21 or assimilation of observation data with the adjoint 
method.22 

In this study we have presented a different approach using an interactive nested grid primitive 
equation model with local mesh refinement developed in References 1 and 2. Three correction 
methods (FIC, LDC and DM) have been incorporated for multigrid local mesh refinement into the 
numerical model OPA. The resulting numerical model was applied to simulate two oceanic 
phenomena: a barotropic modon with an analytical solution and a baroclinic vortex with a reference 
solution (obtained with a single fine grid over the entire domain). The results computed using the 
different correction methods were compared against the analytical and reference solutions and among 
themselves. The three methods were found to have similar accuracy for the case of the modon, 
whereas the two iterative methods (FIC and LDC) were found to be better than the DM for the case of 
the baroclinic vortex. 

Our experience with the elliptic operator is encouraging, but we cannot make a general conclusion 
on the nested method. Moreover, some problems are still not resolved; for example, for baroclinic 
experiments the conservation of momentum, heat or salinity fluxes at the interface between the two 
embedded domains should be investigated more pre~isely.’~ Actually, whatever the local grid 
correction method used for the barotropic part, the nested technique that we have adopted does not 
allow us to conserve these quantities. Finally, note that the local grid correction methods have been 
tested here on academic problems without variable topography (constant S). A situation with 
variable topography will be dealt with in our next work, consisting of a schematic study of the 
circulation in the Gulf of Lion.2 
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